M1.(a) Heating speeds up (hydrolysis / breaking of peptide bonds)
OR forms non-sweet (amino acids)
(b) (2-)aminobutanedioic acid OR 2 not necessary but penalise other numbers at start
(2-)aminobutane(-1,4-)dioic acid 1,4 not necessary but penalise other numbers and 1,4 must be in correct place (QoL)
(c)

allow $-\mathrm{CO}_{2}^{-}$
allow $\mathrm{NH}_{2}-$

allow $-\mathrm{CO}_{2}^{-}$
allow $+\mathrm{NH}_{3}-$
don't penalize position of + on NH_{3}
(e) (i) M1 Compounds/molecules with same structural formula

Not just structure

M2 But with bonds/atoms/groups arranged differently in space or in 3D Allow -with different spatial arrangement of atom/bond/group Independent marks
(ii) (Plane) polarised light

Rotated in opposite directions Not bent or turned or twisted; not different directions (QoL)
nucleophilic addition

$$
\text { M4 for lp and arrow to } \mathrm{H}^{+}
$$

M2.(a)

- allow : $\mathrm{CN}-$
- M2 not allowed independent of M1, but
- allow M1 for correct attack on C+
- + rather than $\delta+$ on $C=O$ loses M2
- M3 is for correct structure including minus sign but lone pair is part of M4
- Allow $\mathrm{C}_{2} \mathrm{H}_{5}$
- M1 and M4 for Ip and curly arrow
(b) 2-bromobutanenitrile

Allow 2-bromobutane-1-nitrile
(c) M1 ammonia or NH_{3}

M2 excess (ammonia) excess tied to NH_{3} and may score in M1 unless contradicted

Ignore concentrated or sealed container, Acid loses conditions mark

1

M3 nucleophilic substitution
Allow close spelling
1

Allow $\mathrm{C}_{2} \mathrm{H}_{5}$
Allow $-\mathrm{CO}_{2}$
Allow ${ }^{+} \mathrm{NH}_{3}-$
Don't penalize position of + on NH_{3}
(ii) M1 electrostatic forces between ions in \boldsymbol{X} QOL Allow ionic bonding.

1

Marks independent
M2 (stronger than) hydrogen bonding between $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$ CE mention of molecules of \boldsymbol{X} or inter molecular forces between \boldsymbol{X} loses both marks

1
(e) (i)

Isomer of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}_{2}$
(ii)

Isomer of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}_{2}$ allow $\mathrm{NH}_{2}-$

(iii) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{COOH}$ or $\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{23) \text {-ооон }}\right.$ Isomer of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}_{2}$ allow $\mathrm{NH}_{2}-$ $O R$

Do not allow $-\mathrm{C}_{3} \mathrm{H}_{6}-$
Beware - do not credit Xitself

1

1
[16]

M3. (a) polyamide or nylon $(2,4)$
(allow nylon without numbers but if numbers are present they must be correct)
(b) $\mathrm{H}_{3} \stackrel{+}{\mathrm{N}}-\mathrm{CH}_{2}-\mathrm{CO} \stackrel{-}{\mathrm{CO}}$
(c) ionic bonding in aminoethanoic acid
(can only score if includes that aminoethanoic is ionic) stronger attractions than Hydrogen bonding in hydroxyethanoic acid (e.g. stronger Hydrogen bonding in aminoethanoic acid scores 0)
(mention of electrostatic forces between molecules scores 0)

allow $-\mathrm{CO}_{2}^{-}$
allow ${ }^{+} \mathrm{NH}_{3}-$
don't penalize position of + on NH_{3}
(ii)

allow $-\mathrm{CO}_{2}^{-}$
allow $\mathrm{NH}_{2}-$
allow $\mathrm{C}_{3} \mathrm{H}_{7}$
(iii)

allow $-\mathrm{CO}_{2} \mathrm{H}$
allow ${ }^{+} \mathrm{NH}_{3}-$
don't penalize position of + on NH_{3}
(b)

allow $-\mathrm{CO}_{2} \mathrm{H}$
allow $\mathrm{NH}_{2}-$
allow $\mathrm{C}_{3} \mathrm{H}_{7}$
allow as zwitterions
if error in peptide link e.g.

if twice, penalise both times
not polymers
if wrong amino acid in both can score Max 1
(c) chromatography or electrophoresis ignore qualification to chromatography

M5. (a) (i) hydrolysis
(ii) 2-aminopropanoic acid ignore alanine QoL
(iii)

(iv)

(b) (i)

(ii)

allow $-\mathrm{CO}_{2} \mathrm{H}$ allow -CONH - or $-\mathrm{COHN}-$
allow $\mathrm{NH}_{2}-$
allow limit as

1
[6]

M6. (a) 3-hydroxypropanoic acid allow 3-hydroxypropionic acid must be correct spelling
(b) (i) must show trailing bonds

or can start at any point in the sequence, e.g.

not allow dimer
allow $-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-$ or $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{COO}-$
ignore () orn
$N B$ answer has a total of 6 carbons and 4 oxygens
(ii) condensation (polymerisation)
(c) (i) $\mathrm{C}=\mathrm{C}$ or carbon-carbon double bond
(ii)

must show ALL bonds including $\mathrm{O}-\mathrm{H}$
(iii) must show trailing bonds

allow polyalkene conseq on their c(ii) ignore n
(d)

allow $\mathrm{NH}_{3}{ }^{+}$-
allow COO^{-}
(e) (i)

In (e), do not penalise a slip in the number of carbons in the $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - chain, but all must be bonded correctly
NB two carboxylate groups
Allow COONa or $\mathrm{COO} \mathrm{Na}^{+}$but not covalent bond to Na allow $\mathrm{NH}_{2}-$
(ii)

OR

In (e), do not penalise a slip in the number of carbons in the $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - chain, but all must be bonded correctly
NB two ester groups
allow NH_{2} - or ${ }^{+} \mathrm{NH}_{3}-$
(iii)

In 4(e), do not penalise a slip in the number of carbons in the $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - chain, but all must be bonded correctly allow anhydride formation on either or both COOH groups (see below) with or without amide group formation

(f) M1 phase or eluent or solvent (or named solvent) is moving or mobile

M2 stationary phase or solid or alumina/silica/resin

M3 separation depends on balance between solubility or affinity (of compounds) in each phase OR different adsorption or retention OR (amino acids have) different R_{f} values OR
(amino acids) travel at different speeds or take different times

